NOTE

On Existence Theorems for Finite-Codimensional Subspaces in $C(Q)^1$

L. P. Vlasov

Institute of Mathematics and Mechanics, ul. S.Kovalevskoi 16, Ekaterinburg 620066, Russia E-mail: Leonid.Vlasov@imm.uran.ru

Communicated by Frank Deutsch

Received September 9, 2001; accepted in revised form February 8, 2002

Some variants of the theorem on the existence of best approximation elements in a finite-codimensional subspace of the complex space C(Q) of continuous functions are given. © 2002 Elsevier Science (USA)

Key Words: space of continuous functions; subspaces of finite codimension; proximinal.

In approximation theory, existence subspaces of finite codimension have been studied since the 1960s. The following theorem was established by Garkavi [3] in the real case and by Vlasov [4] for the complex C(Q). See also [5, 6].

THEOREM A. In order that a finite-codimensional subspace $L \subset C(Q)$ be an existence set, it is necessary and sufficient that the following conditions be satisfied:

- (a) $\forall \mu \in L^{\perp} \setminus \{0\}$ there exists a continuous Radon–Nikodým derivative $\frac{d\mu}{d|\mu|}$;
- (b) $\forall \mu, \nu \in L^{\perp} \setminus \{0\}$ the set $S_{\mu} \setminus S_{\nu}$ is closed;
- (c) $\forall \mu, \nu \in L^{\perp} \setminus \{0\}$ there exists a usual Radon–Nikodým derivative $\frac{d\mu}{d\nu} \in L_1(S_{\nu}, |\nu|)$.

The purpose of this note is to formulate the existence theorem in its different variants.

¹This research was supported by the Russian Foundation for Basic Research, Grants 99-01-00460 and 02-01-00782.

186 NOTE

We denote by S_{μ} the support of \mathbb{K} -valued Radon measure $\mu \in C(Q, \mathbb{K})^*$. Here and in the sequel, \mathbb{K} denotes both the real (\mathbb{R}) and complex (\mathbb{C}) field. By definition, $f = d\mu/dv$ if $\mu e = \int_e f \, dv$ for any Borel set e. The following properties of a Radon–Nikodým derivative should be noted (see, for example, [2, Chap. III, Subsection 10]):

Lemma 1. If $f = d\mu/d|\mu|$, then |f(t)| = 1 μ -almost everywhere; if f is continuous on S_{μ} , then |f(t)| = 1 for all $t \in S_{\mu}$. In addition,

$$\frac{d\mu}{d|v|} = \frac{d\mu}{dv} \cdot \frac{dv}{d|v|}$$

 μ -almost everywhere on the set S_{ν} .

The symbol $\widetilde{\mathbb{K}}$ denotes \mathbb{K} supplemented by "ideal elements": $\widetilde{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$, $\widetilde{\mathbb{C}} = \mathbb{C} \cup \{\infty w : |w| = 1\}$; $C^{\infty}(Q, \widetilde{\mathbb{K}})$ denotes the set of functions from Q to $\widetilde{\mathbb{K}}$ continuous with respect to the corresponding topologies in Q and $\widetilde{\mathbb{K}}$ (see [5]: it is assumed that $z_n \to \infty w$ iff $|z_n| \to \infty$ and $z_n/|z_n| \to w$; $\infty w_n \to \infty w$ as $w_n \to w$, $(\infty w) \cdot 0 = 0$, $\infty \cdot 0 = 0$). Topologically, $\widetilde{\mathbb{C}}$ is equivalent to the disk $|z| \leq 1$.

The set $C^{\infty}(Q, \tilde{\mathbb{K}})$ is neither linear nor normed space, and unfortunately our previous notation $C(Q, \tilde{\mathbb{C}})$ [5] can cause misunderstanding. Existence subspaces are often called *proximinal*.

The following lemmas from [5] will be needed in the sequel.

LEMMA 2 (Vlasov [5, Lemmas 5 and 6]). Let conditions (a) and (c) be fulfilled. Then for any $\mu, \nu \in L^{\perp} \setminus \{0\}$ there exists a Radon–Nikodým derivative $d\mu/d\nu \in C^{\infty}(S_{\nu}, \tilde{\mathbb{K}})$.

Lemma 3 (Vlasov [5, Lemma 8]). Let $\mu, \nu \in C(Q)^* \setminus \{0\}, z \in \mathbb{K}, \lambda = \mu - z\nu, f = d\mu/d\nu, g = d\nu/d|\nu|$. Then

$$\frac{d\lambda}{d|\lambda|}(t) = \frac{f(t) - z}{|f(t) - z|}g(t)$$

for λ -almost all $t \in S_v$ with $f(t) \neq z$.

LEMMA 4 (Vlasov [5, Lemma 2]). Let $\mu, \nu \in C(Q)^*$. Then there exists a countable set $R_{\mu\nu} \subset \mathbb{K}$ such that for all $z \in \mathbb{K} \setminus R_{\mu\nu}$, the measures μ and ν are absolutely continuous with respect to the measure $\mu + z\nu$ and $S_{\mu+z\nu} = S_{\mu} \cup S_{\nu}$.

NOTE 187

THEOREM 1. In order that a finite-codimensional subspace $L \subset C(Q)$ be an existence set it is necessary and sufficient that there hold the conditions (b) and

(1) $\forall \mu, \nu \in L^{\perp} \setminus \{0\}$, there exists a Radon–Nikodým derivative

$$\frac{d\mu}{d|v|} \in C^{\infty}(S_{v}, \tilde{\mathbb{K}}).$$

Proof. Necessity: By Lemma 2, $d\mu/dv \in C^{\infty}(S_v, \tilde{\mathbb{K}})$, and by Lemma 1 condition (1) follows.

Sufficiency is valid since (1) implies (c) and in addition (a) by letting $v = \mu$.

THEOREM 2. The following condition is sufficient for the proximinality of a finite-codimensional subspace $L \subset C(Q, \mathbb{K})$:

(2)
$$\forall \mu, \nu \in L^{\perp} \setminus \{0\}, \qquad \frac{d\mu}{d|\nu|} \in C(S_{\nu}, \mathbb{K}).$$

Proof. Let us apply Theorem A. Condition (c) is fulfilled since $f = d\mu/dv = (d\mu/d|v|)/(dvd/|v|) \in C(S_v, \mathbb{K})$ by Lemma 1. Condition (2) implies (a) by letting $v = \mu$. To derive condition (b), we must show that $\overline{S_{\mu}\backslash S_{\nu}} \subset S_{\mu}\backslash S_{\nu}$, i.e. that $\overline{S_{\mu}\backslash S_{\nu}} \cap S_{\nu} = \emptyset$. Suppose the contrary: there exists $t \in \overline{S_{\mu}\backslash S_{\nu}} \cap S_{\nu}$. Then there exists a net $t_{\alpha} \in S_{\mu}\backslash S_{\nu}$, $t_{\alpha} \to t$. Consider a measure $\lambda = \mu - z\nu$, where $z \in \mathbb{K}\backslash \{0\}$ can be chosen in such a way that $z \neq f(t) = d\mu/dv(t)$, $S_{\lambda} = S_{\mu} \cup S_{\nu}$ (see Lemma 4). Note that $f = d\mu/dv \in C(S_{\nu}, \mathbb{K})$ by Lemma 1. We have $\lambda = \mu$ on $S_{\mu}\backslash S_{\nu}$, and therefore

$$\frac{d\lambda}{d|\lambda|}(t_{\alpha}) = \frac{d\mu}{d|\mu|}(t_{\alpha}) \to \frac{d\mu}{d|\mu|}(t);$$

on the other hand, by Lemma 3 and the continuity of $d\lambda/d|\lambda|$ at the point t,

$$\frac{d\lambda}{d|\lambda|}(t) = \frac{f(t) - z}{|f(t) - z|}g(t) = \frac{d\mu}{d|\mu|}(t)$$

for any $z \notin R_{\mu\nu}$, $z \neq f(t)$, which is impossible: the fraction cannot be the same for various $z \notin R_{\mu\nu} \cup \{f(t)\}$ since $f(t) \in \mathbb{K}$.

THEOREM 3. In order that a finite-codimensional subspace $L \subset C(Q, \mathbb{K})$ be an existence set it is sufficient that there hold conditions (a) and

188 Note

- (3) $\forall \mu, \nu \in L^{\perp} \setminus \{0\}$ on the set S_{ν} there exists a bounded Radon–Nikodým derivative $d\mu/d\nu \in L_{\infty}(S_{\nu}, |\nu|)$.
- *Proof.* Since (3) implies (c), by Lemma 2 there exists a Radon–Nikodým derivative $d\mu/dv \in C^{\infty}(S_{\nu}, \mathbb{K})$. By (3) $d\mu/dv \in C(S_{\nu}, \mathbb{K})$. Taking into account Lemma 1, we obtain (2) and hence the result by Theorem 2.

Remark. In the real case, condition (2) is equivalent to conditions (1) and (2) in [1]. Unfortunately, these authors erroneously believe, that the Radon–Nikodým derivatives are necessarily bounded. That this is not the case is shown by a simple example in $C(Q, \mathbb{R})$, where Q = [0, 1], $Q_1 = \{t_i\}_{i=1}^{\infty}$, $t_i = 1/i$, $\mu\{t_i\} = 1/i^2$, $\nu\{t_i\} = 1/i^3$, $f(t_i) = d\mu/d\nu(t_i) = i = 1, 2, ...$ $\to \infty$; $|\mu|(Q\backslash Q_1) = |\nu|(Q\backslash Q_1) = 0$; the subspace $L = \{\mu, \nu\}_{\perp}$ is proximinal by Garkavi's theorem. It is not difficult to change this example in such a way that the measures μ and ν be atomless.

REFERENCES

- F. Centrone and A. Martellotti, Proximinal subspaces of C(Q) of finite codimension, J. Approx. Theory 101 (1999), 78–91.
- N. Dunford and J. Schwartz, "Linear Operators," Vol. 1, Interscience Publications, New York, 1958.
- 3. A. L. Garkavi, The Helly problem and best approximation in the space of continuous functions, *Izv. Akad. Nauk SSSR* (Ser. Mat.) 31 (1967), 641–656. [in Russian]
- L. P. Vlasov, The existence of elements of best approximation in the complex space C(Q), Mat. Zametki 40 (1986), 627–634 [in Russian]; English Translation in Math. Notes 40 (1986), 857–861.
- L. P. Vlasov, Finite-codimensional Chebyshev subspaces in the complex space C(Q), Mat. Zametki 62 (1997), 178–191 [in Russian]; English Translation in Math. Notes 62 (1997), 148–159.
- L. P. Vlasov, The bicompactum "two arrows of Aleksandrov" and approximation theory, Mat. Zametki 69 (2001), 820–827. [in Russian]